Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Potassium thiocyanate argentates: $\mathrm{K}_{3}\left[\mathrm{Ag}(\mathrm{SCN})_{4}\right], \mathrm{K}_{4}\left[\mathrm{Ag}_{2}(\mathrm{SCN})_{6}\right]$ and $\mathrm{K}\left[\mathrm{Ag}(\mathrm{SCN})_{2}\right]$

Harald Krautscheid* and Stefan Gerber

Institut für Anorganische Chemie, Universität Karlsruhe, Engesserstrasse 30.45, D-76128 Karlsruhe, Germany
Correspondence e-mail: harald@achibm6.chemie.uni-karlsruhe.de

Received 6 February 2001
Accepted 2 April 2001
The anions of the title compounds contain $\left[\mathrm{Ag}(\mathrm{SCN})_{4}\right]$ units, with the S atoms coordinating to Ag^{+}in a tetrahedral arrangement. Whereas in the isolated anions of tripotassium tetrathiocyanatoargentate $(\mathrm{I}), \mathrm{K}_{3}\left[\mathrm{Ag}(\mathrm{SCN})_{4}\right]$, (I), all SCN^{-} groups are bonded as terminal ligands, in tetrapotassium di- μ -thiocyanato- $S: S$-bis[dithiocyanatoargentate $(\mathrm{I})], \mathrm{K}_{4}\left[\mathrm{Ag}_{2}(\mathrm{SCN})_{6}\right]$, (II), two AgS_{4} tetrahedra share one common edge. In poly[potassium [argentate(I)-di- μ-thiocyanato- $S: S]]$, $\mathrm{K}[\mathrm{Ag}$ $\left.(\mathrm{SCN})_{2}\right]$, (III), edge- and vertex-sharing of AgS_{4} tetrahedra results in infinite $\left[\mathrm{Ag}(\mathrm{SCN})_{2}\right]^{-}$layers.

Comment

The compounds $\mathrm{K}\left[\mathrm{Ag}(\mathrm{SCN})_{2}\right]$ and $\mathrm{K}_{2}\left[\mathrm{Ag}(\mathrm{SCN})_{3}\right]$ are reported to form stable phases in the system $\mathrm{AgSCN} / \mathrm{KSCN} /$ $\mathrm{H}_{2} \mathrm{O}$, whereas $\mathrm{K}_{3}\left[\mathrm{Ag}(\mathrm{SCN})_{4}\right]$ is metastable and decomposes in saturated solution into $\mathrm{K}_{2}\left[\mathrm{Ag}(\mathrm{SCN})_{3}\right]$ and KSCN (Merriam, 1902; Foote, 1903a,b; Occleshaw, 1932). Although these compounds were known at the beginning of the last century, only the unit-cell parameters of $\mathrm{K}\left[\mathrm{Ag}(\mathrm{SCN})_{2}\right]$ have been reported to date (Chateau et al., 1962). We isolated the title compounds, $\mathrm{K}_{3}\left[\mathrm{Ag}(\mathrm{SCN})_{4}\right]$, (I), $\mathrm{K}_{4}\left[\mathrm{Ag}_{2}(\mathrm{SCN})_{6}\right]$, (II), and $\mathrm{K}\left[\mathrm{Ag}(\mathrm{SCN})_{2}\right]$, (III), during the optimization of the synthesis of heteronuclear thiocyanate complexes (Krautscheid et al., 1998; Krautscheid \& Gerber, 1999) and we report their crystal structures here.

All three complexes contain Ag^{+}in a distorted tetrahedral environment of four S atoms from the SCN^{-}ligands. Whereas the tetrathiocyanatoargentate anions in (I) are mononuclear, the binuclear anions in (II) can be regarded as two $\left[\mathrm{Ag}(\mathrm{SCN})_{4}\right]$ units sharing two common SCN^{-}ligands. The asymmetric unit of (II) contains a half of each of two crystallographically independent centrosymmetric $\left[\mathrm{Ag}_{2}(\mathrm{SCN})_{6}\right]^{4-}$ anions, which differ in the orientation of two terminal SCN^{-} ligands.

In (III), such $\left[\mathrm{Ag}_{2}(\mathrm{SCN})_{6}\right]$ units are linked by common SCN^{-}groups to form a two-dimensional polymeric network perpendicular to [100]. The existence of two different SCN^{-} ligands coordinating to Ag^{+}through the S atoms, i.e. $1,1-\mu_{2}$
bridging in the $\left[\mathrm{Ag}_{2}(\mathrm{SCN})_{2}\right]$ ring and between these rings, is in accordance with vibrational spectroscopic investigations, in which doublet splitting of the ν_{1} band (2086 and $2099 \mathrm{~cm}^{-1}$) was observed (Tramer, 1962).

In contrast with (III), the SCN^{-}anions in $\left(\mathrm{NH}_{4}\right)\left[\mathrm{Ag}(\mathrm{SCN})_{2}\right]$ can be described as terminal S-coordinating and $1,1,1-\mu_{3}$-bridging, respectively, also leading to a two-dimensional polymeric structure and distorted tetrahedral coordination of the Ag^{+}cations (Lindqvist \& Strandberg, 1957; Hall et al., 1983). In the crystal structure of $\mathrm{Cs}_{2}\left[\mathrm{Ag}(\mathrm{SCN})_{3}\right]$, dinuclear $\left[\mathrm{Ag}_{2}(\mathrm{SCN})_{6}\right]^{4-}$ anions similar to

Figure 1

The structure of the $\left[\mathrm{Ag}(\mathrm{SCN})_{4}\right]^{3-}$ anion in (I) shown with 70% probability displacement ellipsoids.

Figure 2
The structure of the two crystallographically independent $\left[\mathrm{Ag}_{2}(\mathrm{SCN})_{6}\right]^{4-}$ anions in (II) with 70% probability displacement ellipsoids [symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, 1-y,-z]$.

inorganic compounds

those in (II) are found, whereas $\left[\mathrm{Ag}(\mathrm{SCN})_{4}\right]$ tetrahedra are connected by common vertices to polymeric $\left[\mathrm{Ag}(\mathrm{SCN})_{2}\left(\mu_{2^{-}}\right.\right.$ $\left.\mathrm{SCN})_{2 / 2}\right]^{2-}$ anions in $\mathrm{Rb}_{2}\left[\mathrm{Ag}(\mathrm{SCN})_{3}\right]$ (Thiele \& Kehr, 1984).

As expected, the $\mathrm{Ag}-\mathrm{S}$ bond lengths in compounds (I), (II) and (III) are longer for bridging SCN^{-}ligands than for terminal ligands and increase with the negative charge of the thiocyanatoargentate anions. The mean $\mathrm{Ag}-\mathrm{S}$ bond lengths are 2.59 (1) \AA in (I) and 2.56 (1) \AA in (II) for terminal ligands, and 2.69 (3) \AA in (II) and 2.62 (5) \AA in (III) for $1,1-\mu_{2}$ bridging SCN^{-}. The $\mathrm{Ag}-\mathrm{S}-\mathrm{Ag}$ angle for S 1 in (III) connecting two $\mathrm{Ag}_{2} \mathrm{~S}_{2}$ rings $\left[111.30(2)^{\circ}\right]$ is significantly greater than the values for the bridging ligands in the $\mathrm{Ag}_{2} \mathrm{~S}_{2}$ rings of (II) and (III) [83.69 (3)-87.30 (2) ${ }^{\circ}$].

In (I), (II) and (III), all K^{+}ions are surrounded by seven N and S atoms, in distance ranges of 2.732 (4)-3.194 (2) \AA $(\mathrm{K} \cdots \mathrm{N})$ and $3.230(1)-3.663(1) \AA(\mathrm{K} \cdots \mathrm{S})$, respectively. The only exception is K3 in compound (I), with two neighbouring N and six S atoms.

Figure 3
Fragment of the two-dimensional polymeric structure of the $\left[\mathrm{Ag}(\mathrm{SCN})_{2}\right]^{-}$anion in (III) with 70% probability displacement ellipsoids [symmetry codes: (ii) $1-x, 1-y,-z$; (iii) $x, \frac{1}{2}-y, z-\frac{1}{2}$].

Experimental

Crystals of (I) and (III) were grown by the condensation of methanol into concentrated aqueous solutions of AgSCN and KSCN in molar ratios of 1:4.5 and 1:2, respectively. Crystals of (II) were obtained in low yield as a side product during crystallization of (III).

Compound (I)

Crystal data

$\mathrm{K}_{3}\left[\mathrm{Ag}(\mathrm{SCN})_{4}\right]$
$M_{r}=457.49$
Monoclinic, $P 2_{1} / c$
$a=14.343$ (2) \AA
$b=12.778$ (3) \AA
$c=7.798(2) \AA$
$\beta=102.772(18)^{\circ}$
$V=1393.7$ (6) \AA^{3}
$Z=4$
$D_{x}=2.180 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 27 reflections
$\theta=5-10^{\circ}$
$\mu=2.92 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.33 \times 0.15 \times 0.12 \mathrm{~mm}$

Data collection

Stoe Stadi-4 diffractometer ω scans
Absorption correction: numerical (X-RED; Stoe \& Cie, 1997)
$T_{\text {min }}=0.604, T_{\text {max }}=0.688$
7208 measured reflections
2446 independent reflections
1944 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=25^{\circ}$
$h=-17 \rightarrow 17$
$k=-15 \rightarrow 15$
$l=-9 \rightarrow 5$
3 standard reflections frequency: 120 min

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.059$
$S=1.10$
2446 reflections
146 parameters

$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0255 P)^{2}\right.$	
\quad	$\quad 0.1891 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$	

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.58 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0073 (3)

Table 1

Selected geometric parameters ($\AA,^{\circ}$) for (I).

$\mathrm{Ag} 1-\mathrm{S} 1$	$2.5798(11)$	$\mathrm{S} 1-\mathrm{C} 1$	$1.653(4)$
$\mathrm{Ag} 1-\mathrm{S} 2$	$2.5953(12)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.154(4)$
			$100.95(13)$
$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{S} 2$	$106.06(4)$	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Ag} 1$	$178.2(3)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Ag} 1$	$104.97(13)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	

Compound (II)

Crystal data
$\mathrm{K}_{4}\left[\mathrm{Ag}_{2}(\mathrm{SCN})_{6}\right]$
$M_{r}=720.62$
Monoclinic, $P 2_{1} / n$
$a=9.8701$ (6) \AA
$b=20.0893(8) \AA$
$c=10.6229$ (7) \AA
$\beta=105.494$ (8) ${ }^{\circ}$
$V=2029.8(2) \AA^{3}$
$Z=4$
$D_{x}=2.358 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Ag} K \alpha$ radiation
Cell parameters from 8000 reflections
$\theta=1.8-22.4^{\circ}$
$\mu=1.75 \mathrm{~mm}^{-1}$
$T=213$ (2) K
Block, colourless
$0.22 \times 0.18 \times 0.15 \mathrm{~mm}$
Data collection
Stoe IPDS diffractometer
4557 reflections with $I>2 \sigma(I)$ φ scans
Absorption correction: numerical
$R_{\text {int }}=0.036$
(X-RED; Stoe \& Cie, 1997)
$\theta_{\text {max }}=22.4^{\circ}$
$T_{\text {min }}=0.741, T_{\text {max }}=0.803$
$h=-13 \rightarrow 13$
31846 measured reflections
5096 independent reflections
$k=-25 \rightarrow 25$

Table 2
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (II).

$\mathrm{Ag} 1-\mathrm{S} 2$	$2.4914(9)$	$\mathrm{Ag} 2-\mathrm{S} 5$	$2.5839(9)$
$\mathrm{Ag} 1-\mathrm{S} 1$	$2.7083(8)$	$\mathrm{Ag} 2-\mathrm{S} 4$	$2.6601(9)$
$\mathrm{Ag} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.6538(8)$	$\mathrm{Ag} 2-\mathrm{S} 4^{\mathrm{ii}}$	$2.7400(9)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.660(3)$	$\mathrm{S} 4-\mathrm{C} 4$	$1.660(3)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.158(4)$	$\mathrm{C} 4-\mathrm{N} 4$	$1.153(4)$
$\mathrm{S} 2-\mathrm{C} 2$	$1.650(3)$	$\mathrm{S} 5-\mathrm{C} 5$	$1.653(3)$
$\mathrm{S} 2-\mathrm{Ag} 1-\mathrm{S} 1$	$113.66(3)$	$\mathrm{S} 5-\mathrm{Ag} 2-\mathrm{S} 4$	$110.08(3)$
$\mathrm{S} 2-\mathrm{Ag} 1-\mathrm{S} 1^{\mathrm{i}}$	$105.83(3)$	$\mathrm{S} 5-\mathrm{Ag} 2-\mathrm{S} 4^{\mathrm{ii}}$	$138.07(3)$
$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{S} 1$	$92.70(2)$	$\mathrm{S} 4-\mathrm{Ag} 2-\mathrm{S}^{\mathrm{ii}}$	$96.31(3)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Ag} 1$	$100.18(10)$	$\mathrm{C} 4-\mathrm{S} 4-\mathrm{Ag} 2^{\mathrm{i}}$	$101.13(10)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Ag} 1^{\mathrm{i}}$	$\mathrm{C} 4-\mathrm{S} 4-\mathrm{Ag} 2^{\mathrm{ii}}$	$102.26(10)$	
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$178.7(3)$	$\mathrm{N} 4-\mathrm{C} 4-\mathrm{S} 4$	$105.03(10)$
$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Ag} 1$	$106.95(10)$	$\mathrm{C} 5-\mathrm{S} 5-\mathrm{Ag} 2$	$177.4(3)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{S} 2$	$177.7(3)$	$\mathrm{N} 5-\mathrm{C} 5-\mathrm{S} 5$	$106.54(11)$
			$179.3(3)$

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, 1-y,-z$.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.085$
$S=1.05$
5096 reflections
217 parameters

Compound (III)

Crystal data

$\mathrm{K}\left[\mathrm{Ag}(\mathrm{SCN})_{2}\right]$
$M_{r}=263.13$
Orthorhombic, Pbca
$a=17.9382$ (14) \AA
$b=10.7801$ (8) A
$c=6.6879(6) \AA$
$V=1293.28(18) \AA^{3}$
$Z=8$
$D_{x}=2.703 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 50 reflections
$\theta=10-12.5^{\circ}$
$\mu=4.29 \mathrm{~mm}^{-1}$
$T=213$ (2) K
Triangular fragment of a plate, colourless
$0.35 \times 0.25 \times 0.12 \mathrm{~mm}$

Data collection

Stoe Stadi-4 diffractometer ω scans
Absorption correction: numerical
(X-RED; Stoe \& Cie, 1997)
$T_{\text {min }}=0.315, T_{\text {max }}=0.627$
4667 measured reflections
1561 independent reflections
1458 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0448 P)^{2}\right. \\
\quad+4.099 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=2.23 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }= \\
\hline
\end{array} \AA^{-2.08 \text { e } \AA^{-3}}
\end{aligned}
$$

Table 3
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$) for (III).

$\mathrm{Ag}-\mathrm{S} 1$	$2.5774(6)$	$\mathrm{S} 1-\mathrm{C} 1$	$1.667(2)$
$\mathrm{Ag}-\mathrm{S} 2^{\mathrm{ii}}$	$2.5794(5)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.157(3)$
$\mathrm{Ag}-\mathrm{S} 1^{\mathrm{iii}}$	$2.5984(6)$	$\mathrm{S} 2-\mathrm{C} 2$	$1.668(2)$
$\mathrm{Ag}-\mathrm{S} 2$	$2.7262(5)$	$\mathrm{C} 2-\mathrm{N} 2$	$1.158(3)$
$\mathrm{S} 1-\mathrm{Ag}-\mathrm{S} 2^{\mathrm{ii}}$	$127.211(17)$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Ag}^{\mathrm{iv}}$	$103.28(7)$
$\mathrm{S} 1-\mathrm{Ag}-\mathrm{S} 1^{\mathrm{iii}}$	$100.157(14)$	$\mathrm{Ag}-\mathrm{S} 1-\mathrm{Ag}^{\mathrm{iv}}$	$111.30(2)$
$\mathrm{S} 2^{\mathrm{ii}}-\mathrm{Ag}-\mathrm{S} 1^{\text {iii }}$	$118.855(17)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$177.5(2)$
$\mathrm{S} 1-\mathrm{Ag}-\mathrm{S} 2$	$111.142(17)$	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Ag}^{\mathrm{ii}}$	$101.47(7)$
$\mathrm{S}^{2 \mathrm{iii}}-\mathrm{Ag}-\mathrm{S} 2$	$95.192(17)$	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Ag}$	$98.41(7)$
$\mathrm{S} 1^{\text {iii }}-\mathrm{Ag}-\mathrm{S} 2$	$101.565(17)$	$\mathrm{Ag}^{\mathrm{ii}}-\mathrm{S} 2-\mathrm{Ag}$	$84.808(17)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Ag}$	$96.76(8)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{S} 2$	$178.1(2)$

Symmetry codes: (ii) $1-x, 1-y,-z$; (iii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.96 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.046$
$S=1.13$
1561 reflections
74 parameters

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0161 P)^{2}\right.
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.0193 (4)

$$
+1.391 P]
$$

For compounds (I) and (III), data collection: STADI4 (Stoe \& Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe \& Cie, 1997). For compound (II), data collection: IPDS (Stoe \& Cie, 1999); cell refinement: IPDS; data reduction: $I P D S$ and $X-R E D$. For all three compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998).

We thank Professor Dr D. Fenske for his support.
Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1011). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (1998). DIAMOND. Release 2.0. Crystal Impact GbR, Bonn, Germany.
Chateau, H., de Cugnac, A. \& Cerisy, B. (1962). C. R. Acad. Sci. 255, 17271728.

Foote, H. W. (1903a). J. Am. Chem. Soc. 30, 330-339.
Foote, H. W. (1903b). Z. Phys. Chem. 46, 79-86.
Hall, S. R., Mills, N. K. \& White, A. H. (1983). Aust. J. Chem. 36, 1255-1258.
Krautscheid, H., Emig, N., Klaassen, N. \& Seringer, P. (1998). J. Chem. Soc. Dalton Trans. pp. 3071-3077.
Krautscheid, H. \& Gerber, S. (1999). Z. Anorg. Allg. Chem. 625, 2041-2044.
Lindqvist, I. \& Strandberg, B. (1957). Acta Cryst. 10, 173-177.
Merriam, H. F. (1902). J. Am. Chem. Soc. 28, 265-266.
Occleshaw, V. J. (1932). J. Chem. Soc. pp. 2404-2410.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1997). STADI4 and X-RED. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1999). IPDS. Stoe \& Cie, Darmstadt, Germany.
Thiele, G. \& Kehr, W. (1984). Z. Anorg. Allg. Chem. 515, 199-206.
Tramer, A. (1962). J. Chim. Phys. 59, 232-240, 241-248, 637-654.

