Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Potassium thiocyanate argentates: $K_3[Ag(SCN)_4]$, $K_4[Ag_2(SCN)_6]$ and $K[Ag(SCN)_2]$

Harald Krautscheid* and Stefan Gerber

Institut für Anorganische Chemie, Universität Karlsruhe, Engesserstrasse 30.45, D-76128 Karlsruhe, Germany Correspondence e-mail: harald@achibm6.chemie.uni-karlsruhe.de

Received 6 February 2001 Accepted 2 April 2001

The anions of the title compounds contain $[Ag(SCN)_4]$ units, with the S atoms coordinating to Ag^+ in a tetrahedral arrangement. Whereas in the isolated anions of tripotassium tetrathiocyanatoargentate(I), $K_3[Ag(SCN)_4]$, (I), all SCN⁻ groups are bonded as terminal ligands, in tetrapotassium di- μ thiocyanato-S:S-bis[dithiocyanatoargentate(I)], $K_4[Ag_2(SCN)_6]$, (II), two AgS₄ tetrahedra share one common edge. In poly[potassium [argentate(I)-di- μ -thiocyanato-S:S]], K[Ag-(SCN)_2], (III), edge- and vertex-sharing of AgS₄ tetrahedra results in infinite $[Ag(SCN)_2]^-$ layers.

Comment

The compounds $K[Ag(SCN)_2]$ and $K_2[Ag(SCN)_3]$ are reported to form stable phases in the system AgSCN/KSCN/ H₂O, whereas $K_3[Ag(SCN)_4]$ is metastable and decomposes in saturated solution into $K_2[Ag(SCN)_3]$ and KSCN (Merriam, 1902; Foote, 1903*a,b*; Occleshaw, 1932). Although these compounds were known at the beginning of the last century, only the unit-cell parameters of $K[Ag(SCN)_2]$ have been reported to date (Chateau *et al.*, 1962). We isolated the title compounds, $K_3[Ag(SCN)_4]$, (I), $K_4[Ag_2(SCN)_6]$, (II), and $K[Ag(SCN)_2]$, (III), during the optimization of the synthesis of heteronuclear thiocyanate complexes (Krautscheid *et al.*, 1998; Krautscheid & Gerber, 1999) and we report their crystal structures here.

All three complexes contain Ag^+ in a distorted tetrahedral environment of four S atoms from the SCN⁻ ligands. Whereas the tetrathiocyanatoargentate anions in (I) are mononuclear, the binuclear anions in (II) can be regarded as two $[Ag(SCN)_4]$ units sharing two common SCN⁻ ligands. The asymmetric unit of (II) contains a half of each of two crystallographically independent centrosymmetric $[Ag_2(SCN)_6]^{4-}$ anions, which differ in the orientation of two terminal SCN⁻ ligands.

In (III), such $[Ag_2(SCN)_6]$ units are linked by common SCN^- groups to form a two-dimensional polymeric network perpendicular to [100]. The existence of two different SCN^- ligands coordinating to Ag^+ through the S atoms, *i.e.* $1,1-\mu_2$

bridging in the $[Ag_2(SCN)_2]$ ring and between these rings, is in accordance with vibrational spectroscopic investigations, in which doublet splitting of the ν_1 band (2086 and 2099 cm⁻¹) was observed (Tramer, 1962).

In contrast with (III), the SCN⁻ anions in $(NH_4)[Ag(SCN)_2]$ can be described as terminal S-coordinating and 1,1,1- μ_3 -bridging, respectively, also leading to a two-dimensional polymeric structure and distorted tetrahedral coordination of the Ag⁺ cations (Lindqvist & Strandberg, 1957; Hall *et al.*, 1983). In the crystal structure of Cs₂[Ag(SCN)₃], dinuclear [Ag₂(SCN)₆]⁴⁻ anions similar to

Figure 1

The structure of the $[Ag(SCN)_4]^{3-}$ anion in (I) shown with 70% probability displacement ellipsoids.

Figure 2

The structure of the two crystallographically independent $[Ag_2(SCN)_6]^{4-}$ anions in (II) with 70% probability displacement ellipsoids [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, -z].

those in (II) are found, whereas [Ag(SCN)₄] tetrahedra are connected by common vertices to polymeric $[Ag(SCN)_2(\mu_2 SCN_{2/2}$ ²⁻ anions in Rb₂[Ag(SCN)₃] (Thiele & Kehr, 1984).

As expected, the Ag-S bond lengths in compounds (I), (II) and (III) are longer for bridging SCN- ligands than for terminal ligands and increase with the negative charge of the thiocyanatoargentate anions. The mean Ag-S bond lengths are 2.59 (1) Å in (I) and 2.56 (1) Å in (II) for terminal ligands, and 2.69 (3) Å in (II) and 2.62 (5) Å in (III) for $1,1-\mu_2$ bridging SCN⁻. The Ag-S-Ag angle for S1 in (III) connecting two Ag_2S_2 rings [111.30 (2)°] is significantly greater than the values for the bridging ligands in the Ag_2S_2 rings of (II) and (III) [83.69 (3)-87.30 (2)°].

In (I), (II) and (III), all K⁺ ions are surrounded by seven N and S atoms, in distance ranges of 2.732 (4)-3.194 (2) Å $(K \cdots N)$ and 3.230 (1)-3.663 (1) Å $(K \cdots S)$, respectively. The only exception is K3 in compound (I), with two neighbouring N and six S atoms.

Figure 3

Fragment of the two-dimensional polymeric structure of the $[Ag(SCN)_2]^-$ anion in (III) with 70% probability displacement ellipsoids [symmetry codes: (ii) 1 - x, 1 - y, -z; (iii) $x, \frac{1}{2} - y, z - \frac{1}{2}$].

Experimental

Crystals of (I) and (III) were grown by the condensation of methanol into concentrated aqueous solutions of AgSCN and KSCN in molar ratios of 1:4.5 and 1:2, respectively. Crystals of (II) were obtained in low yield as a side product during crystallization of (III).

Compound (I)

Crystal data K₃[Ag(SCN)₄] $M_r = 457.49$ Monoclinic, $P2_1/c$ a = 14.343 (2) Å b = 12.778(3) Å c = 7.798 (2) Å $\beta = 102.772 (18)^{\circ}$ V = 1393.7 (6) Å³ Z = 4

Data collection

Stoe Stadi-4 diffractometer	$R_{\rm c} = 0.033$
ω scans	$\theta_{max} = 25^{\circ}$
Absorption correction: numerical	$h = -17 \rightarrow 17$
(<i>X-RED</i> : Stoe & Cie, 1997)	$k = -15 \rightarrow 15$
$T_{\rm min} = 0.604, \ T_{\rm max} = 0.688$	$l = -9 \rightarrow 5$
7208 measured reflections	3 standard reflections
2446 independent reflections	frequency: 120 min
1944 reflections with $I > 2\sigma(I)$	intensity decay: 2%
Refinement	
Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.027$	$\Delta \rho_{\rm max} = 0.58 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.059$	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$
S = 1.10	Extinction correction: SHELXL97

S = 1.102446 reflections 146 parameters $w = 1/[\sigma^2(F_o^2) + (0.0255P)^2]$ + 0.1891P] where $P = (F_0^2 + 2F_c^2)/3$

Table 1

Selected geometric parameters (Å, °) for (I).

Ag1-S1	2.5798 (11)	S1-C1	1.653 (4)
Ag1-S2	2.5953 (12)	C1-N1	1.154 (4)
S1-Ag1-S2	106.06 (4)	C2-S2-Ag1	100.95 (13)
C1-S1-Ag1	104.97 (13)	N1-C1-S1	178.2 (3)

Extinction coefficient: 0.0073 (3)

(Sheldrick, 1997)

Compound (II)

Crystal data	
$K_4[Ag_2(SCN)_6]$ $M_r = 720.62$ Monoclinic, $P2_1/n$	$D_x = 2.358 \text{ Mg m}^{-3}$ Ag $K\alpha$ radiation Cell parameters from 8000
a = 9.8701 (6) A b = 20.0893 (8) Å c = 10.6229 (7) Å	$\theta = 1.8-22.4^{\circ}$ $\mu = 1.75 \text{ mm}^{-1}$
$\beta = 105.494 \ (8)^{\circ}$ $V = 2029.8 \ (2) \ Å^3$ Z = 4	T = 213 (2) K Block, colourless $0.22 \times 0.18 \times 0.15 \text{ mm}$
Data collection	
Stoe IPDS diffractometer φ scans Absorption correction: numerical	4557 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$ $\theta_{\text{max}} = 22.4^{\circ}$
(X-RED; Stoe & Cie, 1997) $T_{\text{min}} = 0.741, T_{\text{max}} = 0.803$ 31 846 measured reflections 5096 independent reflections	$h = -13 \rightarrow 13$ $k = -25 \rightarrow 25$ $l = -14 \rightarrow 14$ Intensity decay: none
JUJU Independent reflections	intensity decay. none

Table 2

Selected geometric parameters (Å, °) for (II).

Ag1-S2	2.4914 (9)	Ag2-S5	2.5839 (9)
Ag1-S1	2.7083 (8)	Ag2-S4	2.6601 (9)
Ag1-S1 ⁱ	2.6538 (8)	Ag2-S4 ⁱⁱ	2.7400 (9)
S1-C1	1.660 (3)	S4-C4	1.660 (3)
C1-N1	1.158 (4)	C4-N4	1.153 (4)
S2-C2	1.650 (3)	\$5-C5	1.653 (3)
S2-Ag1-S1	113.66 (3)	S5-Ag2-S4	110.08 (3)
S2-Ag1-S1 ⁱ	105.83 (3)	S5-Ag2-S4 ⁱⁱ	138.07 (3)
S1 ⁱ -Ag1-S1	92.70 (2)	S4-Ag2-S4 ⁱⁱ	96.31 (3)
C1-S1-Ag1	100.18 (10)	C4-S4-Ag2	102.26 (10)
C1-S1-Ag1 ⁱ	101.13 (10)	C4-S4-Ag2 ⁱⁱ	105.03 (10)
N1-C1-S1	178.7 (3)	N4-C4-S4	177.4 (3)
C2-S2-Ag1	106.95 (10)	C5-S5-Ag2	106.54 (11)
N2-C2-S2	177.7 (3)	N5-C5-S5	179.3 (3)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, -z.

 $D_{\rm r} = 2.180 {\rm Mg} {\rm m}^{-3}$

Cell parameters from 27

Mo $K\alpha$ radiation

reflections

 $\mu = 2.92 \text{ mm}^{-1}$

T = 293 (2) K

Prism, colourless

 $0.33 \times 0.15 \times 0.12 \text{ mm}$

 $= 5 - 10^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.085$ S = 1.055096 reflections 217 parameters

Compound (III)

Crystal data

Data collection

Stoe Stadi-4 diffractometer ω scans Absorption correction: numerical (X-RED; Stoe & Cie, 1997) $T_{min} = 0.315, T_{max} = 0.627$ 4667 measured reflections 1561 independent reflections 1458 reflections with $I > 2\sigma(I)$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 \\ &+ 4.099P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 2.23 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -2.08 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Mo K α radiation Cell parameters from 50 reflections $\theta = 10-12.5^{\circ}$ $\mu = 4.29 \text{ mm}^{-1}$ T = 213 (2) KTriangular fragment of a plate, colourless $0.35 \times 0.25 \times 0.12 \text{ mm}$

 $\begin{aligned} R_{\text{int}} &= 0.022\\ \theta_{\text{max}} &= 28^{\circ}\\ h &= 0 \rightarrow 23\\ k &= -14 \rightarrow 14\\ l &= -8 \rightarrow 8\\ 2 \text{ standard reflections}\\ \text{frequency: 120 min}\\ \text{intensity decay: none} \end{aligned}$

Table 3

Selected geometric parameters (Å, °) for (III).

A = 01	25774(6)	£1 C1	1 ((7 (2)
Ag-51	2.5774 (6)	31-CI	1.007 (2)
Ag-S2 ⁿ	2.5794 (5)	C1-N1	1.157 (3)
Ag-S1 ⁱⁱⁱ	2.5984 (6)	S2-C2	1.668 (2)
Ag-S2	2.7262 (5)	C2-N2	1.158 (3)
S1-Ag-S2 ⁱⁱ	127.211 (17)	C1-S1-Ag ^{iv}	103.28 (7)
S1-Ag-S1 ⁱⁱⁱ	100.157 (14)	Ag-S1-Ag ^{iv}	111.30 (2)
S2 ⁱⁱ -Ag-S1 ⁱⁱⁱ	118.855 (17)	N1-C1-S1	177.5 (2)
S1-Ag-S2	111.142 (17)	C2-S2-Ag ⁱⁱ	101.47 (7)
S2 ⁱⁱ -Ag-S2	95.192 (17)	C2-S2-Ag	98.41 (7)
S1 ⁱⁱⁱ -Ag-S2	101.565 (17)	Ag ⁱⁱ -S2-Ag	84.808 (17)
C1-S1-Ag	96.76 (8)	N2-C2-S2	178.1 (2)

Symmetry codes: (ii) 1 - x, 1 - y, -z; (iii) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (iv) $x, \frac{1}{2} - y, \frac{1}{2} + z$.

Refinement

```
Refinement on F^2

R[F^2 > 2\sigma(F^2)] = 0.020

wR(F^2) = 0.046

S = 1.13

1561 reflections

74 parameters

w = 1/[\sigma^2(F_o^2) + (0.0161P)^2 + 1.391P]

where P = (F_o^2 + 2F_c^2)/3
```

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.003 \\ \Delta\rho_{\rm max} = 0.96 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.57 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ SHELXL97} \\ ({\rm Sheldrick, \ 1997}) \\ {\rm Extinction \ coefficient: \ 0.0193 \ (4)} \end{array}$

For compounds (I) and (III), data collection: *STADI*4 (Stoe & Cie, 1997); cell refinement: *STADI*4; data reduction: *X-RED* (Stoe & Cie, 1997). For compound (II), data collection: *IPDS* (Stoe & Cie, 1999); cell refinement: *IPDS*; data reduction: *IPDS* and *X-RED*. For all three compounds, program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1998).

We thank Professor Dr D. Fenske for his support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1011). Services for accessing these data are described at the back of the journal.

References

- Brandenburg, K. (1998). *DIAMOND*. Release 2.0. Crystal Impact GbR, Bonn, Germany.
- Chateau, H., de Cugnac, A. & Cerisy, B. (1962). C. R. Acad. Sci. 255, 1727– 1728.
- Foote, H. W. (1903a). J. Am. Chem. Soc. 30, 330-339.
- Foote, H. W. (1903b). Z. Phys. Chem. 46, 79-86.
- Hall, S. R., Mills, N. K. & White, A. H. (1983). Aust. J. Chem. 36, 1255–1258.Krautscheid, H., Emig, N., Klaassen, N. & Seringer, P. (1998). J. Chem. Soc. Dalton Trans. pp. 3071–3077.

Krautscheid, H. & Gerber, S. (1999). Z. Anorg. Allg. Chem. 625, 2041-2044.

Lindqvist, I. & Strandberg, B. (1957). Acta Cryst. 10, 173-177.

Merriam, H. F. (1902). J. Am. Chem. Soc. 28, 265-266.

Occleshaw, V. J. (1932). J. Chem. Soc. pp. 2404-2410.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (1999). IPDS. Stoe & Cie, Darmstadt, Germany.

Thiele, G. & Kehr, W. (1984). Z. Anorg. Allg. Chem. 515, 199-206.

Tramer, A. (1962). J. Chim. Phys. 59, 232-240, 241-248, 637-654.